If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+6x+2=4
We move all terms to the left:
3x^2+6x+2-(4)=0
We add all the numbers together, and all the variables
3x^2+6x-2=0
a = 3; b = 6; c = -2;
Δ = b2-4ac
Δ = 62-4·3·(-2)
Δ = 60
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{60}=\sqrt{4*15}=\sqrt{4}*\sqrt{15}=2\sqrt{15}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{15}}{2*3}=\frac{-6-2\sqrt{15}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{15}}{2*3}=\frac{-6+2\sqrt{15}}{6} $
| b=(0.75)90 | | 10.1x-1.6x+44=7 | | x+5x-5+5x-5=122 | | 6−9x=-120 | | x+2x-3+2x-3=34 | | 30*30=40x*10x | | x+2x-3+34=180 | | 6-2x=6x−10x+14. | | -5(x+5)-2x=-46 | | −6x−10=−4x−6 | | 10+0.5(c-12)=11 | | –2(2u+6)=16 | | 2(c+3)+5c=-15 | | Y=-16t²+48t+4 | | 21044/11t^2=63/1.02696t | | Y=-16t²+48+4 | | F(n)=F(n-1)+F(n-3)+F(n-5) | | 5x²+x-7=4x+7 | | 21044/11t^2=63÷1+(4/25000)(300/1.78t) | | t^2=5121.65t | | 5x+12=-20-30x | | 5x+1+2x-2=5x+7 | | 5x+7+2x-2=5x+1 | | 5x+7+5x+1=2x-2 | | (x)+(x+2)=2(x+1) | | 2y=2y+14-14 | | 2y=2y+14+14 | | 17x+1=16x+4 | | 5(2y+6)=20+11y | | 23-4(x=3) | | 5(2y+6)+20+11y=y | | 5x+5=6x+1=9x-4 |